高度对称的多面体和它们的对偶多面体

正四面体、正方体、正八面体、正十二面体、正二十面体,这是古希腊人就发现的五种正多面体,它们拥有最高标准的对称性。这五种正多面体又叫做 Platonic 体,它们在古希腊的哲学观念中占据着至关重要的地位。 Leonhard Euler 发现,多面体的顶点数 V 、棱数 E 和面数 F 一定满足公式 V – E + F = 2 ,这叫做 Euler 多面体公式。利用这个公式,我们可以证明正多面体只有五种。假设一个正多面体的每个面都是正 p 边形,那么所有 F 个面一共就有 p · F 条边;每两条边拼在一起形成了一条棱,因而总的棱数就是 E = p · F / 2 。反过来, F 就应该等于 2 · E / p 。不妨再假设每个顶点处都汇集了 q 条棱,那么总的棱数似乎应有 q · V 个;但这样计算的话,每条棱都被重复算了两次,因而总的棱数实际上应该是 E = q · V / 2 。反过来, V 就应该等于 2 · E / q 。另外, Euler 的多面体公式告诉我们, V – E + F = 2 始终成立。

把上面几个式子合在一起,于是得到:

2 · E / q – E + 2 · E / p = 2

整理可得:

1/p + 1/q – 1/2 = 1/E

因此, 1/p + 1/q 一定大于 1/2 。但是,正多面体每个面至少都有三条边,每个顶点也至少汇集了三条棱,因此 p 和 q 都是大于等于 3 的整数。要想 1/p + 1/q > 1/2 ,只有以下五种可能:

  1. p = 3 , q = 3
  2. p = 3 , q = 4
  3. p = 4 , q = 3
  4. p = 3 , q = 5
  5. p = 5 , q = 3

这正好对应于那五种正多面体。最近 Localhost-8080 沉迷于折纸,我也因此学习了不少与多面体相关的东西。想不到,这些看似老生常谈的东西,里面的水可深着呢。这五种正多面体表面上只是问题的五个不同的解,但互相之间却有着出人意料的联系。我们再列一个更加完整的表格,有意思的东西会慢慢呈现出来:

名称 面数 F 顶点数 V 棱数 E 每个面的边数 p 每个顶点处的棱数 q
正四面体 4 4 6 3 3
正方体 6 8 12 4 3
正八面体 8 6 12 3 4
正十二面体 12 20 30 5 3
正二十面体 20 12 30 3 5

Read more…

杨辉三角中的自然底数 e

你相信吗,杨辉三角里竟然也有自然底数 e 的身影。 2012 年, Harlan Brothers 发现了杨辉三角中的一个有趣的事实。不妨把杨辉三角第 n 行的所有数之积记作 sn ,那么随着 n 的增加, sn · sn+2 / sn+12 会越来越接近 e ≈ 2.718 。事实上,我们有:

这是为什么呢? John Baez 在这个网页上给出了一个漂亮的解释。

Read more…

两两接触的等粗且无限长的圆柱体

    大家在吃饭喝酒时是否注意到了这样的事情:三个人碰杯时,每个人的杯子都能同时和其他两个人的杯子相接触,很完美;但是四个人碰杯时,任一时刻总会有两个人碰不到杯,非常尴尬。有一次和三个好朋友吃饭,四人碰杯时又发生了这种尴尬的情况,突然有一个人异想天开,把他的杯子放到了另外三个杯子的上面,从而实现了四个杯子两两接触!我们自然引出了这样一个问题:如果 n 个全等的圆柱体两两相接触,则 n 最大是多少?

      

    对于不同形状的圆柱体,答案可能是不一样的。 Martin Gardner 在 Hexaflexagons and other mathematical diversions 一书中提到,我们可以精巧地摆放 5 枚硬币,使得它们两两相接触,如上图所示(注意,最底下还藏着一枚硬币)。同时, Martin Gardner 问到,能否摆放 6 支香烟让它们两两接触?一个经典的答案如下:

      

Read more…

怎样把一个钝角三角形分成若干个锐角三角形

    这是我最喜欢的几何谜题之一:你能否在纸上画一个钝角三角形,然后把它分割成若干个锐角三角形?令人难以置信的是,这竟然是可以办到的!继续看下去之前,大家不妨先自己想一会儿。

      

    每次我在课堂上提出这个问题的时候,学生们总会疯狂而盲目地进行尝试。根据我的观察,绝大多数人都会先画一个不那么钝的钝角三角形(其实这本质上并不会简化我们的问题),然后作出一系列类似于图 1 的尝试,但最后都以失败告终。此时我往往会反复强调:要有方法啊,要有方法!首先,想必很多人已经注意到了,我们必须在钝角里引出一条线(如图 2 所示),这样才能把钝角给消除掉。接下来,则是很少有人意识到的一点:我们不能让这条线一直延伸到对边,否则原三角形将会被分成一个锐角三角形和一个钝角三角形(或者两个直角三角形),这并不能解决根本问题。也就是说,这条线在到达对边前就必须得分岔。最后一个关键的问题就是,分成几岔?显然,分成三岔(如图 3 所示)是不够的,因为这样只能把一个周角分成四份,它们不可能都是锐角。为了让所有的角都是锐角,我们至少要让这条线分成四岔(如图 4 所示)。最后,再把一些没有连起来的点连起来,我们就得到一个像模像样的答案了(如图 5 所示)。

Read more…