趣题:无限多层嵌套的逻辑推理

大家一定见过很多“我不知道,我也不知道,我还是不知道,我还是不知道,我知道了,我也知道了”的问题。但是,我想大家一定没有见过下面这样的问题。

A 、 B 两人在主持人 C 的带领下玩一个游戏。 C 向两人宣布游戏规则:“一会儿我会随机产生两个不同的形如 n – 1/2k – 1/2k+r 的数,其中 n 、 k 是正整数, r 是非负整数。然后,我会把这两个数分别交给你们。你们每个人都只知道自己手中的数是多少,但不知道对方手中的数是多少。你们需要猜测,谁手中的数更大一些。”这里,我们假设所有人的逻辑推理能力都是无限强的,并且这一点本身也成为了共识。 C 按照规则随机产生了两个数,把它们交给了 A 和 B ,然后问他们是否知道谁手中的数更大。于是有了这样的一段对话。

Read more…

趣题:下一根枕木应该画在哪儿?

一位画家正在画画。画布上是一望无际的平原,一条笔直的铁路向无限远的地方延伸。画家画了铁路上的两根相邻的枕木,它们在画面上呈两条平行的线段,并且都与地平线平行。这时,画家突然犯难了:根据透视的原理,下一根枕木应该画在哪儿呢?你能帮他确定出下一根枕木的位置吗?

这里,我们假设陆地是一个无限大的平面,并且铁路上的相邻枕木之间的间距相等。

Read more…

整数分拆中的一个出人意料的结论

把 6 分成一个或多个正整数之和,本质不同的方案只有以下 11 种:

分拆方案 含有多少种不同的数
6 1
5 + 1 2
4 + 2 2
4 + 1 + 1 2
3 + 3 1
3 + 2 + 1 3
3 + 1 + 1 + 1 2
2 + 2 + 2 1
2 + 2 + 1 + 1 2
2 + 1 + 1 + 1 + 1 2
1 + 1 + 1 + 1 + 1 + 1 1

其中,每一行右边的那个数表示,该分拆方案中含有多少种不同的数。把右列的所有数全部加起来,结果是 19 。神奇的是,如果你数一数所有分拆方案中 1 出现的总次数,你会发现结果也是 19 。

这并不是巧合。事实上,对于任意一个正整数来说,各个分拆方案中不同的数的个数之和,一定都等于所有方案中 1 出现的总次数。这是为什么呢?这个结论还有一个比较直接的推广,你能想到吗?

Read more…

实数、超实数和博弈游戏:数学的结构之美

(一)一个博弈游戏

让我们来玩一个游戏。下面有五行石子,白色的石子都是我的,黑色的石子都是你的。我们轮流拿走一个自己的石子,并且规定如果一个石子被拿走了,它后面的所有石子都要被扔掉。谁先没有拿的了,谁就输了。

○●●○●●○●●○
●○○●○●●○●
○○○○
●●●○●●●

Read more…