趣题:用 k × 1 的矩形覆盖 n × n 的正方形棋盘

用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,往往不能实现完全覆盖(比如,有时候 n × n 甚至根本就不是 k 的整倍数)。不过,在众多覆盖方案中,总有一种覆盖方案会让没有覆盖到的方格个数达到最少,我们就用 m(n, k) 来表示这个数目。求证:不管 n 和 k 是多少, m(n, k) 一定是一个完全平方数。

Read more…

杨辉三角中的自然底数 e

你相信吗,杨辉三角里竟然也有自然底数 e 的身影。 2012 年, Harlan Brothers 发现了杨辉三角中的一个有趣的事实。不妨把杨辉三角第 n 行的所有数之积记作 sn ,那么随着 n 的增加, sn · sn+2 / sn+12 会越来越接近 e ≈ 2.718 。事实上,我们有:

这是为什么呢? John Baez 在这个网页上给出了一个漂亮的解释。

Read more…

保加利亚单人纸牌游戏

保加利亚单人纸牌游戏(Bulgarian solitaire)的玩法如下:

取出 45 张牌,然后把它们随意分成若干堆。接下来,从每一堆里各取一张牌,叠在一起形成一堆新的牌。不断这样做下去,如果某个时候桌面上正好有 9 堆牌,并且各堆牌数分别为 1, 2, 3, 4, …, 9 ,你就获胜了。

乍看上去,如果初始局面设定不佳,游戏很可能会陷入某个循环,从而永远无法获胜。然而, 1981 年,丹麦数学家 Jørgen Brandt 证明了,对于任意一个初始局面(包括把所有牌摆成 1 堆,以及把所有牌分成 45 堆这样的极端局面),游戏都能在有限步之内获胜。事实上,如果把 45 换成任意一个三角形数 n = 1 + 2 + … + k ,结论仍然成立。

Read more…