Which Way Did the Bicycle Go 趣题选(中)

14. 有意思的是,在数学历史上,一些很简单的结论竟然几百年来都未曾发现。直到 1977 年, Paul Erdős 和 George Szekeres 才发现,除了两头的 1 以外,杨辉三角同一行内的任意两个数都有公因数。证明这个结论。

答案:只需要注意到, a 乘以一个比 b 小的数之后还能成为 b 的倍数,这说明 a 和 b 一定有公因数。不妨设 0 < i < j < n ,则 C(j, i) < C(n, i) 。我们的命题可以由下述关系直接推出。      C(n, j) · C(j, i) = n! / (j! (n - j)!) · j! / (i! (j - i)!) = n! / (i! (n - j)! (j - i)!) = n! / (i! (n - i)!) · (n - i)! / ((j - i)! (n - j)!) = C(n, i) · C(n-i, j-i)

Read more…

如何构造一个平滑的最大值函数

    在处理最优化问题时,我们常常通过分析导函数来寻找极值点,因此往往希望目标函数是可导的;但在很多实际问题中,目标函数里经常带有取最大值函数,它的存在将破坏函数的可导性。一个有趣的问题由此产生:能否设计一个平滑的二元函数 f(x,y) ,它的效果近似于 max(x,y) ,足以用来代替最大值函数?在设计这样的函数时,下面这些条件需要尽可能满足:

   · 函数简洁而美观
   · 可以调整函数的“平滑度”
   · 可以很方便地扩展到多个变量

Read more…

Runge现象:多项式插值不见得次数越高越准确

    今天学到了一个新的名词,Runge现象。1901年,Carl David Tolmé Runge意外地发现,用差值插值多项式逼近函数f(x)=1/(1+25x^2)时出现了一些反常的现象。如图,灰色的粗线就是Runge函数在[-1,1]上的图象。蓝色虚线是过[-1,1]上的6个等距点所得到的5次多项式,红色虚线是过[-1,1]上的10个等距点所得到的9次多项式。可以看到,当次数变高时,插值多项式反而变得更不准确。

Read more…

为什么f'(x)与f(x)/x的交点恰为后者的极值点?

    在今天晚上的微观经济学课上,我又听到了一个比较有意思的东西。试着找找各种类型的连续函数f(x),画出f'(x)和f(x)/x的函数图像,你会发现一个奇怪的现象:f'(x)与f(x)/x相交的地方都是f(x)/x取到极值的地方。简单地算一算,我们不难证实这个结论。f(x)/x的导数等于f'(x)/x – f(x)/x^2。将f'(x)=f(x)/x代入上式,可得f'(x)/x – f(x)/x^2 = f(x)/x^2 – f(x)/x^2 = 0。这就是说,当f'(x)与f(x)/x相等的时候,f(x)/x的导数一定等于0。有意思的是,这个结论还有一个非常直观的解释,你能想到吗?

 

Read more…

趣题:连续函数上的水平线段

    连续函数f(x)满足f(0)=0且f(1)=0。证明,总能在[0,1]中找到两个数a和b满足b-a=1/2且f(a)=f(b)。换句话说,我们总能画出一条长为1/2的水平线段,它的两个端点都在函数f(x)上。
    这个证明再次用到了我们上次提及的零点定理。考虑f(1/2)的值,如果它也等于0,我们的问题就直接解决了。无妨设f(1/2)>0,那么考虑f(x+1/2)-f(x)的值:当x=0时,该值为一个正数;但当x=1/2时,这个值变成了一个负数。这表明,在x从0增长到1/2的过程中,一定有某一刻使得f(x+1/2)-f(x)恰好为0。

    我们接下来的问题是,除了长为1/2的横线段始终存在以外,还有哪些长度值具有相同的性质?下面我们证明,对任意一个正整数n,长为1/n的横线段也总是存在的。

Read more…