公平分割问题:均衡分割与免嫉妒分割

    大家或许都知道经典的两人分饼问题——为了实现公平性,只需要一个人切,另一个人选即可。不过,在现实生活中,情况远没有那么理想。如果把大饼换成蛋糕,问题就复杂了很多——你想吃奶油,我想吃巧克力,他想吃水果⋯⋯如果分蛋糕的人对蛋糕各部分的价值看法有分歧,还能实现公平的分割吗?如果分蛋糕的人不止两个呢?     事实上,对于两个人分蛋糕的情况,经典的“你来分我来选”的方法仍然是非常有效的,即使双方对蛋糕价值的计算方法不一致也没关系。首先,由其中一人执刀,把蛋糕切分成两块;然后,另一个人选出他自己更想要的那块,剩下的那块就留给第一个人。由于分蛋糕的人事先不知道选蛋糕的人会选择哪一块,为了保证自己的利益,他必须(按照自己的标准)把蛋糕分成均等的两块。这样,不管对方选择了哪一块,他都能保证自己总可以得到蛋糕总价值的 1/2 。     不过,细究起来,这种方法也不是完全公平的。对于分蛋糕的人来说,两块蛋糕的价值均等,但对于选蛋糕的人来说,两块蛋糕的价值差异可能很大。因此,选蛋糕的人往往能获得大于 1/2 的价值。一个简单的例子就是,蛋糕表面是一半草莓一半巧克力的。分蛋糕的人只对蛋糕体积感兴趣,于是把草莓的部分分成一块,把巧克力的部分分成一块;但他不知道,选蛋糕的人更偏爱巧克力一些。因此,选蛋糕的人可以得到的价值超过蛋糕总价值的一半,而分蛋糕的人只能恰好获得一半的价值。而事实上,更公平一些的做法是,前一个人得到所有草莓部分和一小块巧克力部分,后面那个人则分得剩下的巧克力部分。这样便能确保两个人都可以得到一半多一点的价值。     但是,要想实现上面所说的理想分割,双方需要完全公开自己的信息,并且要能够充分信任对方。然而,在现实生活中,这是很难做到的。考虑到分蛋糕的双方尔虞我诈的可能性,实现绝对公平几乎是不可能完成的任务。因此,我们只能退而求其次,给“公平”下一个大家普遍能接受的定义。在公平分割 (fair division) 问题中,有一个最为根本的公平原则叫做“均衡分割” (proportional division) 。它的意思就是, 如果有 n 个人分蛋糕,则每个人都认为自己得到了整个蛋糕至少 1/n 的价值 。从这个角度来说,“你来分我来选”的方案是公平的——在信息不对称的场合中,获得总价值的一半已经是很让人满意的结果了。

那些神秘的数学常数

    我一直觉得,数学中的各种常数是最令人敬畏的东西,它们似乎是宇宙诞生之初上帝就已经精心选择好了的。那一串无限不循环的数字往往会让人陷入一种无底洞般的沉思——为什么这串数字就不是别的,偏偏就是这个样呢。除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。今天,就让我们一起来看一看,数学当中到底有哪些神秘的无理常数。   √2 ≈ 1.4142135623730950488     古希腊的大哲学家 Pythagoras 很早就注意到了数学与大千世界的联系,对数学科学的发展有着功不可没的贡献。他还创立了在古希腊影响最深远的学派之一—— Pythagoras 学派。 Pythagoras 学派对数字的认识达到了审美的高度。他们相信,在这个世界中“万物皆数”,所有事物都可以用整数或者整数之比来描述。     第一个无理数 √2 的发现者就是一位 Pythagoras 学派的学者,他叫做 Hippasus 。据说,一日 Hippasus 向 Pythagoras 提出了这样的问题:边长为 1 的正方形,对角线长度能用整数之比来表示吗? Pythagoras 自己做了一些思考,证明了这个数确实无法用整数之比来表示。由于这一发现触犯了学派的信条,因此 Pythagoras 杀害了 Hippasus 。     利用勾股定理可知,这个数是方程 x^2 = 2 的唯一正数解,我们通常就记作 √2 。 √2 可能是最具代表性的无理数了,我们之前曾经介绍过很多 √2 的无理性的证明。无理数的出现推翻了古希腊数学体系中的一个最基本的假设,直接导致了第一次数学危机,整座数学大厦险些轰然倒塌。     无理数虽说无理,在生产生活中的用途却是相当广泛。例如,量一量你手边的书本杂志的长与宽,你会发现它们的比值就约为 1.414 。这是因为通常印刷用的纸张都满足这么一个性质:把两条宽边对折到一起,得到一个新的长方形,则新长方形的长宽之比和原来一样。因此,如果原来的长宽比为 x : 1 ,新的长宽比就是 1 : x/2 。解方程 x : […]

刷屏新工具:史上最壮观的生命游戏构造图

    这个名叫Caterpillar飞船的图形是有史以来最大的生命游戏构造,它的宽度为4195,高度为330721,要想完整地显示出整个图案需要2000多个显示屏。整个图像即使压缩成RLE文件也有29MB,多数生命游戏模拟软件都无法成功处理。它的周期为270代,每过270代之后整个飞船将竖直移动102个单位,也就是说整个飞船以17c/45的速度向前飞行(c是生命游戏世界中的光速,即一格每代,任何物体都不能超过这个速度)。     下图以1:40的比例展示了整个构造图。

令人称奇的简单证明:五种方法证明根号2是无理数

    我喜欢各种各样的证明。有史以来我见过的最诡异的证明写在http://www.matrix67.com/blog/article.asp?id=34。人们很难想到这样一些完全找不到突破口的东西竟然能够证明得到。说“没有突破口”还不够确切。准确地说,有些命题多数人认为“怎么可能能够证明”却用了一些技巧使得证明变得非常简单。我看了五色定理的证明,定理宣称若要对地图进行染色使得相邻区域不同色,五种颜色就够了。没看证明之前,我一直在想这个玩意儿可以怎么来证明。直到看了证明过程后才感叹居然如此简单,并且立即意识到四色定理基本上也是这种证明方法。还有,像“一个单位正方形里不可能包含两个互不重叠且边长和超过1的小正方形”这样的命题竟然完全用初中学的那些平面几何知识证明到了,简单得不可思议。关键是,我们能够读懂证明过程,但只有牛人才能想到这个证明过程。    今天在OIBH上看到了这个帖子,帖子中哲牛分享的一篇文章The Power Of Mathematics恰好说明了这一点。文章中包含有一个推翻“万物皆数”的新思路,相当有启发性。今天我想把我已经知道的四种证明连同新学到的这一个一起写下来。     如何证明存在一种不能表示为两个整数之比的数?    古希腊曾有“万物皆数”的思想,这种认为“大自然的一切皆为整数之比”的思想统治了古希腊数学相当长的一段时间,许多几何命题都是根据这一点来证明的。当时的很多数学证明都隐性地承认了“所有数都可以表示为整数之比”,“万物皆数”的思想是古希腊数学发展的奠基。直到有一天,毕达哥拉斯的学生Hippasus告诉他,单位正方形的对角线长度不能表示为两个整数之比。被人们公认的假设被推翻了,大半命题得证的前提被认定是错的,古希腊时代的数学大厦轰然倒塌,数学陷入了历史上的第一次危机。最后,Eudoxus的出现奇迹般地解决了这次危机。今天我们要看的是,为什么单位正方形的对角线长度不能表示为两个整数之比。           单位正方形的对角线长度怎么算呢?从上面的这个图中我们可以看到,如果小正方形的面积是1的话,大正方形的面积就是2。于是单位正方形的对角线是面积为2的正方形的边长。换句话说,Hippasus认为不可能存在某个整数与整数之比,它的平方等于2。    中学课程中安排了一段反证法。当时有个题目叫我们证根号2是无理数,当时很多人打死了也想不明白这个怎么可能证得到,这种感觉正如前文所说。直到看了答案后才恍然大悟,数学上竟然有这等诡异的证明。    当然,我们要证明的不是“根号2是无理数”。那个时候还没有根号、无理数之类的说法。我们只能说,我们要证明不存在一个数p/q使得它的平方等于2。证明过程地球人都知道:假设p/q已经不能再约分了,那么p^2=2*q^2,等式右边是偶数,于是p必须是偶数。p是偶数的话,p^2就可以被4整除,约掉等式右边的一个2,可以看出q^2也是偶数,即q是偶数。这样,p也是偶数,q也是偶数,那么p和q就还可以继续约分,与我们的假设矛盾。     根号2是无理数,我们证明到了。根号3呢?根号5呢?你可能偶尔看到过,Theodorus曾证明它们也是无理数。但Theodorus企图证明17的平方根是无理数时却没有继续证下去了。你可以在网上看到,Theodorus对数学的贡献之一就是“证明了3到17的非平方数的根是无理数”。这给后人留下了一个疑问:怪了,为什么证到17就不证了呢?一个俄国的数学历史家“猜”到了原因。    他猜测,当时Theodorus就是用类似上面的方法证明的。比如,要证明根号x不是有理数,于是p^2=x*q^2。我们已经证过x=2的情况了,剩下来的质数都是奇数。如果x是奇数且p/q已经不能再约分,那么显然p和q都是奇数。一个奇数2n+1的平方应该等于4(n^2+n)+1,也即8 * n(n+1)/2 + 1,其中n(n+1)/2肯定是一个整数。如果p=2k+1,q=2m+1,把它们代进p^2=x*q^2,有8[k(k+1)/2 – x*m(m+1)/2] = x-1。于是x-1必须是8的倍数。如果当时Theodorus是这么证明的,那么他可以得到这样一个结论,如果x-1不能被8整除,那么它不可能被表示成(p/q)^2。好了,现在3、5、7、11、13减去1后都不是8的倍数,它们的平方根一定不是有理数。在x=9时发生了一次例外,但9是一个平方数。而当x=17时这种证明方法没办法解释了,于是Theodorus就此打住。     实际上,我们上面说的这么多,在古希腊当时的数学体系中是根本不可能出现的。毕达哥拉斯时代根本没有发展出代数这门学科来,它们掌握的只是纯粹的几何。因此,Hippasus当时的证明不可能像我们现在这样搞点什么奇数x偶数y之类的高科技东西。事实上,Hippasus当时完全运用的平面几何知识来证明他的结论。有人觉得奇怪了,既然当时没有代数,古希腊人是怎么提出“所有数都可以表示为整数之比”的呢?其实古希腊人根本没有提出什么整数之比,这是后人的一个误解。当时毕达哥拉斯学派提出的,叫做“公度单位”。    两条线段的公度单位,简单的说就是找一个公度量,使得两条线段的长度都是这个公度量的整倍数(于是这个公度量就可以同时作为两条线段的单位长度并用于测量)。寻找公度量的方法相当直观,就是不断把较长的那个线段减去短的那个线段,直到两个线段一样长。熟悉数论的同学一下就明白了这就是欧几里德的辗转相除算法求最大公约数。第一次数学危机的根结就在于,古希腊人理所当然地相信不断地截取线段,总有一个时候会截到两个线段一样长。后来,Hippasus画了这么一张图,告诉大家了一个反例:有可能这个操作会无穷尽地进行下去。           现在看他怎么解释,在图中的BC和BD之间进行辗转相除为什么永远不能停止。把BD减去BC,剩下一段DE。以DE为边做一个新的小正方形DEFG,那么显然DE=EF=FC(∵△EDF为等腰直角且△BEF≌△BCF)。接下来我们应该在BC和DE间辗转相除。BC就等于CD,CD减去一个DE相当于减去一个FC,就只剩下一段DF了。现在轮到DE和DF之间辗转相除,而它们是一个新的正方形的边和对角线,其比例正好与最初的BC和BD相当。于是,这个操作再次回到原问题,并且无限递归下去。最后的结论用我们的话说就是,不存在一个数x使得BC和BD的长度都是x的整倍数。于是,BD/BC不能表示为两个整数之比p/q(否则BD/p=BC/q,这就成为了那个x)。     有发现上面的代数证明和几何证明之间的共同点吗?它们都是这样的一个思路:假设我已经是满足这个性质的最小的那个了,那么我就可以用一种方法找出更小的一个来,让你无限循环下去,数目越来越小,永