再谈Julia集与Mandelbrot集

    很早以前,我简单介绍过 Julia 集和 Mandelbrot 集,文章在此。这可以说是数学中最神秘、最令人敬畏的研究对象之一。不过,那时我对这个话题了解还不太深。今天见到这个网页,让我对 Julia 集和 Mandelbrot 集有了更深的了解。我查阅了一些其他的资料,然后写下这篇长文,与大家一同分享。继续阅读以前,建议先看看我原来那篇文章(很短),那里面有很多漂亮的 Julia 集和 Mandelbrot 集的图片,这篇文章就不再展示了。

 
    还是让我们先来简单复习一下复数吧。由于承认“负数也能开平方”将会带来很多幽雅和便利的结论,因此我们发明了虚数,用 i 来表示 -1 的平方根(即虚数单位),并把实数扩展为复数(即一切形如 a + b i 的数)。正如实数可以用数轴上的点来表示一样,复数可以用平面直角坐标系上的点来表示。令 x 轴表示复数的实数部分,令 y 轴表示复数的虚数部分,则 a + b i 就对应了平面上的点 (a, b) 。我们把这个平面直角坐标系叫做“复平面”。

Read more…

经典证明:Cantor集中的元素两两相加可以遍历[0,2]

    今天看到一个有趣的证明,来源在这里

      

    Cantor 集是一个简单而又神奇的分形图形。把 [0, 1] 三等分,挖去中间那一段(即挖去 (1/3, 2/3) ),然后把剩下两段也都分别进行三等分,并挖去各自中间的一段。这样无限地进行下去,最后得到的极限点集就是 Cantor 集了(上面那张图不是分割线,是 Cantor 集的一个示意图)。我们通常把 Cantor 集记作 C 。Cantor 集具有很多神奇的性质:它的 Lebesgue 测度为 0,但它却包含有不可数个点;它里面的每个点都不是孤点,但它却又是无处稠密的。你可以在这里看到一些具体的分析。

    Cantor 集还有很多其他的性质。若 A 、 B 是两个集合,定义 A + B = {a + b | a ∈ A 并且 b ∈ B} ,也就是 A 中的某个元素与 B 中的某个元素相加可能得到的所有结果。下面我们将证明,C + C = [0, 2]。

Read more…

兔年快乐,送大家分形兔子一只

    考虑复数域上的迭代公式 zn+1 = zn^2 + (- 0.123 + 0.745 i) 。取不同的初始值 z0 ,迭代后 zi 的发散速度是不一样的。对于复平面上的每个点,以它为初始值的数列发散速度越快,就染越深的颜色表示;如果以它为初始值数列发散缓慢甚至收敛,则用相对较浅的颜色来表示。那么,整个图形将会是什么样子呢?本人纯手工打造 Mathematica 代码两行,为大家送上这幅神奇的图形:

  

    难以置信,简单的公式竟然生成了如此复杂的分形图形,看上去仿佛是大大小小的兔子竖着耳朵跳出来给大家拜年一样。这个图形叫做 Douady 兔子,是由法国数学家 Adrien Douady 发现的。它是一种 Julia 集