公式 h = (1/2)·g·t^2 里, t 头上的平方并不奇怪。显然,物体下落的路程是与重力加速度 g 和时间 t 有关的,高度 h 就由这两个变量决定。注意到 g 是一个加速度单位,是米除以平方秒的形式;为了得出一个以长度为单位的结果,我们必须要消除分母位置上的“平方秒”,因而时间变量 t 必须要以平方的形式出现。
类似地, E = m·c^2 里的平方也不是凭空而来的。能量的单位是牛乘以米,牛本身又是千克乘以米每平方秒,刨根到底能量的单位就该是 千克·(米^2)/(秒^2) ,正好符合等式右侧“质量乘以速度平方”的量纲。
在数学中,量纲法也是无处不在。 n 维球的体积公式一定是半径的 n 次方乘以一个系数, Heron 公式 A = √s(s – a)(s – b)(s – c) 看似复杂的外表下也遵循着量纲这一金科玉律。给定 n 个数,我们有多种定义其平均数的方案,包括所有数之和的 n 分之一(算术平均数),所有数乘积的 n 次方根(几何平均数),所有数的倒数和的倒数的 n 倍(调和平均数),所有数的平方和的 n 分之一的平方根(均方根),等等。由于一组数的平均值的量纲应该和这些数本身的量纲保持一致,因此在各种平均数的公式里,平方了就要开回去,取倒了还得倒回来,全乘在一起就得开 n 次方,这样才能得到同样类型的数。
自从在《怎样解题》里看到了量纲法,在学习和讲解数理知识时我便特别留意量纲,慢慢总结出上面这些用于说明量纲规律的经典例子。今天,我又看到了一个把量纲用得神乎其技的经典例子,在这里和大家分享。