位换记号、排列测试与状态图:杂耍中的数学

2016 年 7 月 30 日至 8 月 7 日,第 39 届欧洲杂耍大会(European Juggling Convention)在荷兰的阿尔梅勒举行, 8 月 3 日凌晨的搏击之夜(Fight Night)自然再度成为了众人关注的焦点——它是杂耍斗(combat juggling)这项运动最大的赛事。在杂耍斗的圈子里,有两个响当当的大名你必须要知道:德国选手 Jochen Pfeiffer 目前世界排名第二,之前拿过 6 次搏击之夜的冠军;英国选手 Luke Burrage 目前世界排名第一,之前拿过 8 次搏击之夜的冠军。这一年的比赛中,两位老将均以完胜的成绩轻松进入 32 强,并在淘汰赛阶段过关斩将,最终成功在决赛场上相遇。最终,世界排名第二的 Jochen 以 5 比 4 的成绩击败了世界排名第一的 Luke ,夺得了又一个搏击之夜的冠军。

杂耍斗是一种两人对战类的体育运动。比赛规则非常简单。每局比赛开始时,两名选手各自抛耍 3 个杂耍棒。任何一方都可以故意上前干扰另一方(但只能针对对方手中的或者空中的杂耍棒,不能针对对方的手臂和身体)。谁站到最后,谁就赢得该局。先赢 5 局者获得比赛的胜利。

典型的一局比赛大致就像下面这样。这是 Jochen 和 Luke 的第 6 局比赛。

Read more…

捡石子游戏、 Wythoff 数表和一切的 Fibonacci 数列

让我们来玩一个游戏。把某个国际象棋棋子放在棋盘上,两人遵循棋子的走法,轮流移动棋子,但只能将棋子往左方、下方或者左下方移动。谁先将棋子移动到棋盘的最左下角,谁就获胜。如果把棋子放在如图所示的位置,那么你愿意先走还是后走?显然,答案与我们放的是什么棋子有关。

这个游戏对于兵来说是没有意义的。在如图所示的地方放马或者放象,不管怎样都无法把它移动到棋盘的最左下角,所以我们也就不分析了。因此,我们只需要研究王、后、车三种情况。

Read more…

实数、超实数和博弈游戏:数学的结构之美

(一)一个博弈游戏

让我们来玩一个游戏。下面有五行石子,白色的石子都是我的,黑色的石子都是你的。我们轮流拿走一个自己的石子,并且规定如果一个石子被拿走了,它后面的所有石子都要被扔掉。谁先没有拿的了,谁就输了。

○●●○●●○●●○
●○○●○●●○●
○○○○
●●●○●●●

Read more…

45 道 Bongard 问题:寻找图形分类的依据

如果让你设计一种用于人工智能测试的谜题,你会怎么设计?俄国计算机科学家 Mikhail Moiseevich Bongard 在 1967 年出版的 Проблема Узнавания 一书中提出了一种“图形分类依据”型的谜题。谜题的规则很简单:现已按照某种依据把 12 张图片分成了左右两组(每组各 6 张),问依据是什么。在 Проблема Узнавания 的附录中, Bongard 自己出了 100 道题,并把它们依次编号为 1, 2, 3, …, 100 。很多题目对于人类来说非常简单,分类依据几乎是一目了然;但是,要想设计某种算法让计算机自动解出,则是一件看上去几乎不可能完成的任务。下面这张图是书上第 283 页的三个谜题。第 7 号谜题的答案是,左边的图形都是竖着的,右边的图形都是横着的;第 8 号谜题的答案是,左边的图形都在右边,右边的图形都在左边;第 9 号谜题的答案是,左边的图形都是平滑的线条,右边的图形都是波浪形线条。

Read more…

Penney 的游戏:正所谓后发制人,先发制于人

让我们来玩一个游戏。连续抛掷硬币,直到最近三次硬币抛掷结果是“正反反”或者“反反正”。如果是前者,那么我获胜,你需要给我 1 元钱;如果是后者,那么你获胜,我会给你 1 元钱。你愿意跟我玩这样的游戏吗?换句话说,这个游戏是公平的吗?

乍看上去,你似乎没有什么不同意这种玩法的理由,毕竟“正反反”和“反反正”的概率是均等的。连续抛掷三次硬币可以产生 8 种不同的结果,上述两种各占其中的 1/8 。况且,序列“正反反”和“反反正”看上去又是如此对称,获胜概率怎么看怎么一样。

实际情况究竟如何呢?实际情况是,这个游戏并不是公平的——我的获胜概率是你的 3 倍!虽然“正反反”和“反反正”在一串随机硬币正反序列中出现的频率理论上是相同的,但别忘了这两个序列之间有一个竞争的关系,它们要比赛看谁先出现。一旦抛掷硬币产生出了其中一种序列,游戏即宣告结束。这样一来,你就会处于一个非常窘迫的位置:不管什么时候,只要掷出了一个正面,如果你还没赢的话,你就赢不了了——在出现“反反正”之前,我的“正反反”必然会先出现。

事实上,整个游戏的前两次硬币抛掷结果就已经决定了两人最终的命运。只要前两次抛掷结果是“正正”、“正反”、“反正”中的一个,我都必胜无疑,你完全没有翻身的机会;只有前两次掷出的是“反反”的结果,你才会赢得游戏的胜利。因此,我们两人的获胜概率是 3:1 ,我的优势绝不止是一点。

你或许想问,如果已知我的硬币序列是“正反反”,那么你应该选择一个怎样的硬币序列,就能保证获胜概率超过我呢?研究表明,你可以选择“正正反”,这样一来,我们两人的获胜概率将会变为 1:2 ,换句话说你将会有 2/3 的概率获胜。 Using your Head is Permitted 趣题站 2014 年 5 月的趣题对此进行了更深一步的探究。

A 、 B 两人打算玩这么一个游戏。首先, A 选择一个长度为 n 的正反序列,然后 B 再选择另一个长度为 n 的正反序列。之后,不断抛掷硬币,哪名玩家所选的正反序列最先出现,哪名玩家就获胜。我们的问题是,假如两名玩家都采取最优策略的话,对于哪些 n ,游戏对玩家 A 更有利一些(换句话说,玩家 A 拥有超过 50% 的胜率),对于哪些 n ,游戏对玩家 B 更有利一些(换句话说,玩家 B 拥有超过 50% 的胜率)。今后,为了方便起见,我们用数字 1 代表“正面”,用数字 0 代表“反面”。

Read more…