Keller 猜想与 12 维空间中的神构造

在各种令人惊讶的数学事实当中,我最喜欢的类型之一便是,某个数学命题在二维空间、三维空间甚至四维空间当中都是成立的,但偏偏到了某个维度时,命题就不成立了。 Keller 猜想就是一个这样的例子。

同样大小的正方形平铺整个平面(比如像下图那样),则一定存在某些边与边完全贴合的相邻正方形。

类似地,同样大小的正方体平铺整个空间(比如像下图那样),则一定存在某些面与面完全贴合的相邻正方体。

1930 年, Ott-Heinrich Keller 猜测,或许这一点对于更高维度的空间都是成立的。也就是说, Ott-Heinrich Keller 猜测,对于任意正整数 n ≥ 2 都有,同样大小的 n 维立方体平铺整个 n 维空间,则一定有两个面与面完全贴合的相邻 n 维立方体。这就是著名的 Keller 猜想。

1940 年, Oskar Perron 证明了,当 n = 2, 3, 4, 5, 6 时, Keller 猜想确实是正确的。一切似乎都在正轨上。然而,到了 1992 年的时候,事情出现了转折: Jeffrey Lagarias 和 Peter Shor 构造了一个 n = 12 时的反例,从而推翻了 Keller 猜想。让我们来看一看 Lagarias 和 Shor 的神构造吧。为了方便起见,下面我们直接用“立方体”一词指代 n 维的广义立方体,“立方体的面”则代表 n 维立方体的 n – 1 维面。

Read more…

趣题:正方形能被画成什么样?

房间的正中间悬浮着一个正方形的金属框。五位画家看到这般奇迹后,立即拿出纸和笔,把这个金属框的样子画了下来。但是,由于五位画家观察这个金属框的角度不同,它们画出来的结果也互不相同。请问,这五位画家画出来的结果都是对的吗?换句话说,有没有哪一幅图或者哪几幅图根本不可能是一个正方形的透视图?

Read more…

高度对称的多面体和它们的对偶多面体

正四面体、正方体、正八面体、正十二面体、正二十面体,这是古希腊人就发现的五种正多面体,它们拥有最高标准的对称性。这五种正多面体又叫做 Platonic 体,它们在古希腊的哲学观念中占据着至关重要的地位。 Leonhard Euler 发现,多面体的顶点数 V 、棱数 E 和面数 F 一定满足公式 V – E + F = 2 ,这叫做 Euler 多面体公式。利用这个公式,我们可以证明正多面体只有五种。假设一个正多面体的每个面都是正 p 边形,那么所有 F 个面一共就有 p · F 条边;每两条边拼在一起形成了一条棱,因而总的棱数就是 E = p · F / 2 。反过来, F 就应该等于 2 · E / p 。不妨再假设每个顶点处都汇集了 q 条棱,那么总的棱数似乎应有 q · V 个;但这样计算的话,每条棱都被重复算了两次,因而总的棱数实际上应该是 E = q · V / 2 。反过来, V 就应该等于 2 · E / q 。另外, Euler 的多面体公式告诉我们, V – E + F = 2 始终成立。

把上面几个式子合在一起,于是得到:

2 · E / q – E + 2 · E / p = 2

整理可得:

1/p + 1/q – 1/2 = 1/E

因此, 1/p + 1/q 一定大于 1/2 。但是,正多面体每个面至少都有三条边,每个顶点也至少汇集了三条棱,因此 p 和 q 都是大于等于 3 的整数。要想 1/p + 1/q > 1/2 ,只有以下五种可能:

  1. p = 3 , q = 3
  2. p = 3 , q = 4
  3. p = 4 , q = 3
  4. p = 3 , q = 5
  5. p = 5 , q = 3

这正好对应于那五种正多面体。最近 Localhost-8080 沉迷于折纸,我也因此学习了不少与多面体相关的东西。想不到,这些看似老生常谈的东西,里面的水可深着呢。这五种正多面体表面上只是问题的五个不同的解,但互相之间却有着出人意料的联系。我们再列一个更加完整的表格,有意思的东西会慢慢呈现出来:

名称 面数 F 顶点数 V 棱数 E 每个面的边数 p 每个顶点处的棱数 q
正四面体 4 4 6 3 3
正方体 6 8 12 4 3
正八面体 8 6 12 3 4
正十二面体 12 20 30 5 3
正二十面体 20 12 30 3 5

Read more…