26 个比较概率大小的问题

你的数学直觉怎么样?你能凭借直觉,迅速地判断出谁的概率大,谁的概率小吗?下面就是 26 个这样的问题。如果你感兴趣的话,你可以先扫一遍所有的问题,再逐一阅读答案,看看你猜对了多少。这篇文章很长,你可以考虑把它加入书签,每天看几个问题。

 

1.A 、 B 、 C 、 D 四人玩扑克牌游戏, A 、 C 两人同盟, B 、 D 两人同盟。将除去大小王的 52 张牌随机分发给四人(每人获得 13 张牌)后,下面哪种情况的可能性更大一些?

A.A 、 C 两人手中都没有梅花
B.A 、 C 两人手中囊括了所有的梅花
C.上述两种情况的出现概率相同

A 、 C 两人手中都没有梅花,等价于 B 、 D 两人手中囊括了所有的梅花,它的概率与 A 、 C 两人手中囊括所有梅花的概率相同。因此,这个问题的答案显然是 C 。

Read more…

UyHiP 趣题:出现次数最多的诱导子图

下面这道题目是 Using your Head is Permitted 谜题站 2015 年 12 月的题目

若干个顶点(vertex)以及某些顶点对之间的边(edge)就构成了一个图(graph)。下面就是这篇文章里会用到的四个图。其中,第一个图是由 2 个顶点组成的路径(path),因而我们把它称作 P2 ;第二个图是由 3 个顶点组成的路径,因而我们把它称作 P3 。第三个图是由 3 个顶点组成的一个环(cycle),因而我们把它称作 C3 ;第四个图是由 4 个顶点组成的一个环,因而我们把它称作 C4

选取图中的一个或多个顶点,同时选出这些顶点之间的所有边,得到的就是原图的一个“诱导子图”(induced subgraph)。在这篇文章中,我们只考虑那些连通的诱导子图。下面是一个有 6 个顶点的图,右边则列出了由它可以产生出来的所有连通诱导子图。注意,由于有些诱导子图不是连通的(比如只选择正上方的两个点和右下角的两个点,或者干脆只选择最左边那个点和最右边那个点),因而它们并没有在右边列出。在这些连通诱导子图里,很多图的本质都是相同的。比方说,第一行最后三个图和第二行前面四个图的本质是一样的,它们都是刚才我们介绍过的 P2 。当然,第一行的前六个图的本质也都是一样的,即由单个顶点构成的图,有时会被人们记作 K1 。观察最后一行的倒数第二个和倒数第三个图,你能看出这两个图的本质也一样吗?只不过,它们就没有什么固定的名字了。在这些连通诱导子图里,哪一种图出现的次数最多呢?答案就是 P3 ,它一共出现了 8 次。

我们的问题是:能否构造一个图,使得里面出现次数最多的连通诱导子图是 C3 ?能否构造一个图,使得里面出现次数最多的连通诱导子图是 C4 ?注意,如果两种连通诱导子图出现的次数一样多,那它们都不算出现次数多的连通诱导子图。

Read more…

怎样把一个立方体分成 54 个小立方体?

大家或许都听说过一个与正方形剖分相关的非常经典的问题:对于哪些正整数 n ,我们可以把一个正方形分割成 n 个小正方形(允许出现大小相同的小正方形)?答案是,除了 n = 2, 3, 5 以外,对于其他所有的 n ,把一个正方形分割成 n 个小正方形都是有可能的。对于 n = 1, 4, 6, 7, 8 的情况,分割方案如下图所示:

对于更大的 n 呢?注意到,每次用横竖两条线把一个小正方形分成四个更小的小正方形后,我们都会让这个图形里的正方形数目增加 3 个。因此,我们只需要在 n = 6 的方案上增加两笔,就能得到一个 n = 9 的方案;只需要在 n = 7 的方案上增加两笔,就能得到一个 n = 10 的方案;只需要在 n = 8 的方案上增加两笔,就能得到一个 n = 11 的方案;只需要在 n = 9 的方案上增加两笔,就能得到一个 n = 12 的方案……于是,其他所有的情况都被我们解决了。

Read more…

Keller 猜想与 12 维空间中的神构造

在各种令人惊讶的数学事实当中,我最喜欢的类型之一便是,某个数学命题在二维空间、三维空间甚至四维空间当中都是成立的,但偏偏到了某个维度时,命题就不成立了。 Keller 猜想就是一个这样的例子。

同样大小的正方形平铺整个平面(比如像下图那样),则一定存在某些边与边完全贴合的相邻正方形。

类似地,同样大小的正方体平铺整个空间(比如像下图那样),则一定存在某些面与面完全贴合的相邻正方体。

1930 年, Ott-Heinrich Keller 猜测,或许这一点对于更高维度的空间都是成立的。也就是说, Ott-Heinrich Keller 猜测,对于任意正整数 n ≥ 2 都有,同样大小的 n 维立方体平铺整个 n 维空间,则一定有两个面与面完全贴合的相邻 n 维立方体。这就是著名的 Keller 猜想。

1940 年, Oskar Perron 证明了,当 n = 2, 3, 4, 5, 6 时, Keller 猜想确实是正确的。一切似乎都在正轨上。然而,到了 1992 年的时候,事情出现了转折: Jeffrey Lagarias 和 Peter Shor 构造了一个 n = 12 时的反例,从而推翻了 Keller 猜想。让我们来看一看 Lagarias 和 Shor 的神构造吧。为了方便起见,下面我们直接用“立方体”一词指代 n 维的广义立方体,“立方体的面”则代表 n 维立方体的 n – 1 维面。

Read more…

UyHiP 趣题:几乎所有数都能分解成若干个 3x · 4y 之和

下面这个题目来自 2015 年 7 月的 Using your Head is Permitted 。假设集合 S 是由所有形如 3x · 4y 的数构成的,其中 x 和 y 都是非负整数。因而,集合 S 是一个无穷集合,其中最小的几个元素依次为 1, 3, 4, 9, 12, 16, 27, … 。如果某个正整数 n 能表示成集合 S 中的一个或多个不重复的数之和,我们就说 n 是集合 S 的一个子集和。例如, 23 就是 S 的一个子集和,因为 23 可以表示成 3 + 4 + 16 。然而, 6 就不是 S 的一个子集和。

求证:除了有限多个正整数以外,其他所有的正整数都是集合 S 的子集和。

Read more…